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Abstract

An apparent paradox that appears in problems of heat conduction in porous media subject to lack of local thermal equilibrium
(LaLotheq) that was introduced by Vadasz [Transport in Porous Media 59 (2005) 341–355] is reformulated and resolved. This apparent
paradox relates to a combination of Dirichlet and insulation boundary conditions and leads the solution towards local thermal equilib-
rium (Lotheq).
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

An apparent paradox related to the problem of heat
conduction in porous media subject to lack of local thermal
equilibrium (LaLotheq) was introduced by Vadasz [1]. The
said paradox arises for a combination of Dirichlet and
insulation boundary conditions.

Previous work on porous media heat transfer subject to
lack of local thermal equilibrium (LaLotheq) was under-
taken among others by Nield [2,3], Minkowycz et al. [4],
Banu and Rees [5], Baytas and Pop [6], Kim and Jang
[7], Rees [8], Alazmi and Vafai [9], and Nield et al. [10].
In particular, Nield [3] shows that for uniform thermal con-
ductivities the steady state conduction leads to local ther-
mal equilibrium (Lotheq) if the temperature or its normal
derivative on the boundary are identical for both phases.

Tzou [11,12] refers to experimental results in porous
media heat conduction identifying thermal oscillations
and overshooting, and explains them by applying the
dual-phase-lagging (DuPhlag) model. In particular,
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Minkowycz et al. [4] link the LaLotheq model with the
DuPhlag model in a similar manner to Tzou [11,12] how-
ever they do not claim the possibility of oscillations.
Vadasz [13–15] proved that such oscillations are not
possible.

The present paper aims at demonstrating that, for a fluid
saturated porous layer subject to heat conduction (tran-
sient as well as steady state) and any combination of
imposed temperatures and insulation on the boundary,
the dual-phase thermal conduction leads apparently back
to Lotheq conditions and to a very particular case of iden-
tical effective thermal diffusivities for both phases. This
paradox is resolved in this paper. While Vadasz [1] intro-
duced the apparent paradox in terms of a three-dimen-
sional general domain the present paper deals with a
two-dimensional rectangular domain and the generaliza-
tion to any three-dimensional domain is discussed. While
the paper is particularly aimed at the conditions applicable
to a porous medium Vadasz [15,16] showed that similar
results and conclusions are applicable to suspensions of
solid particles in fluids, or to bi-composite media (a combi-
nation of two different solid phases).

In the present paper a contextual notation is introduced
to distinguish between dimensional and dimensionless
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Nomenclature

Fhs dimensionless group defined in Eq. (14)
Fhf dimensionless group defined in Eq. (14)
Foq heat flux related Fourier number, equals

aesq=L2

FoT temperature gradient related, Fourier number,
equals aesT=L2

Bh bi-harmonic dimensionless group, equals be=L2

Bf dimensionless group, equals Bh=Foq ¼ asaf=a2
e

h integral heat transfer coefficient for the heat
conduction at the solid–fluid interface (dimen-
sional)

ks effective thermal conductivity of the solid phase,
equals ð1� uÞ~ks (dimensional)

~ks thermal conductivity of the solid phase (dimen-
sional)

kf effective thermal conductivity of the fluid phase,
equals u~kf (dimensional)

~kf thermal conductivity of the fluid phase (dimen-
sional)

L the length of the porous slab (dimensional)
Nis solid phase Nield number, Eq. (14)
Nif fluid phase Nield number, Eq. (14)
q

*
heat flux vector (dimensional)

t
*

time (dimensional)
T temperature (dimensional)
TC coldest wall temperature (dimensional)
TH hottest wall temperature (dimensional)
x

*
horizontal co-ordinate (dimensional)

x
*

spatial variables vector (dimensional) equals
ðx�; y�; z�Þ

Greek symbols

ae effective thermal diffusivity, defined in Eq. (6)
(dimensional)

as solid phase effective thermal diffusivity, equals
ks=cs (dimensional)

af fluid phase effective thermal diffusivity, equals
kf=cf (dimensional)

be bi-harmonic coefficient, defined in Eq. (6)
(dimensional)

cs solid phase effective heat capacity, equals
ð1� uÞqscs (dimensional)

cf fluid phase effective heat capacity, equals uqf cp;f

(dimensional)
hi dimensionless temperature, equals ðT i � T CÞ=

ðT H � T CÞ for i = s, f
gc heat capacities ratio, equals cf=cs

gk thermal conductivity ratio, equals kf=ks

u porosity
w dimensionless group, equals FoT=Foq ¼ sT=sq

qs solid phase density
qf fluid phase density
sq time lag associated with the heat flux, defined in

Eq. (6) (dimensional)
sT time lag associated with the temperature gradi-

ent, defined in Eq. (6) (dimensional)

Subscripts

* corresponding to dimensional values
s related to the solid phase
f related to the fluid phase
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variables and parameters. The contextual notation implies
that an asterisk subscript is used to identify dimensional
variables and parameters only when ambiguity may arise
when the asterisk subscript is not used. For example x

*
is

the dimensional horizontal coordinate, while x is its corre-
sponding dimensionless counterpart. However ks is the
effective solid phase thermal conductivity, a dimensional
parameter that appears without an asterisk subscript with-
out causing ambiguity.
2. Problem formulation and the apparent paradox

Let us consider the heat conduction in a rectangular
two-dimensional fluid saturated porous domain that is
exposed to different constant temperatures on the vertical
walls and to insulation conditions on the horizontal walls
as presented in Fig. 1. Heat conduction in porous media
subject to lack of local thermal equilibrium (LaLotheq) is
governed at the macro-level by the following equations that
represent averages over each phase within an REV (repre-
sentative elementary volume)
cs

oT s

ot�
¼ ksr2

�T s � hðT s � T fÞ ð1Þ

cf

oT f

ot�
¼ kfr2

�T f þ hðT s � T fÞ ð2Þ

where Qsf ¼ hðT s � T fÞ represents the rate of heat genera-
tion in the fluid phase within the REV due to the heat
transferred over the fluid–solid interface, and where cs ¼
ð1� uÞqscs and cf ¼ uqfcp;f are the solid phase and fluid
phase effective heat capacities, respectively, u is the poros-
ity, ks ¼ ð1� uÞ~ks and kf ¼ u~kf are the effective thermal
conductivities of the solid and fluid phases, respectively.
The coefficient h > 0, carrying units of W m�3 K�1, is a
macro-level integral heat transfer coefficient for the heat
conduction at the fluid–solid interface (averaged over the
REV) that is assumed independent of the phases’ tempera-
tures and independent of time. Note that this coefficient is
conceptually distinct from the convection heat transfer
coefficient and is anticipated to depend on the thermal con-
ductivities of both phases as well as on the surface area to
volume ratio (specific area) of the medium [16].



Fig. 1. Problem formulation – heat conduction in a two-dimensional
rectangular domain subject to lack of local thermal equilibrium
(LaLotheq).
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Eqs. (1) and (2) are linearly coupled and represent the
traditional form of expressing the process of heat conduc-
tion in porous media subject to LaLotheq [3,17]. When
the value of the interface heat transfer coefficient vanishes,
h = 0 (physically representing an interface that is an ideal
insulator, e.g. the solid–fluid interface is coated with a
highly insulating material) Eqs. (1) and (2) un-couple and
the solution for the temperature of each phase is indepen-
dent of the other phase, the phase having the highest ther-
mal diffusivity producing a temperature that equilibrates
faster to its steady state value. Very large values of h on
the other hand lead to local thermal equilibrium (Lotheq)
as observed by dividing Eqs. (1) and (2) by h and looking
for the limit as h!1 that produces (at least at the leading
order) T s ¼ T f . The latter occurs because despite the fact
that one phase (the slow one) diffuses heat at a slower pace
a perfect compensation occurs due to the interface heat
transfer, i.e. the change in temperature in the faster phase
is instantly converted into an identical temperature change
in the slower phase via the heat transferred through the
interface without any resistance because h!1. Similar
results may be obtained with a finite interface heat transfer
coefficient, h, if the thermal diffusivities of both phases are
identical, i.e. as ¼ ðks=csÞ ¼ ðkf=cfÞ ¼ af . Then, both phases
will diffuse heat at the same pace leading naturally to
T s ¼ T f and a vanishing heat transfer over the interface
hðT s � T fÞ ¼ 0 irrespective of the value of h.

For the two-dimensional system considered here (see
Fig. 1) the Laplacian operator r2

� is defined in the form
r2
� ¼ o

2=ox2
� þ o

2=oy2
�. The boundary conditions applicable

to the problem at hand are constant temperature at the ver-
tical walls and insulation at the top and bottom horizontal
walls
x� ¼ 0 : T s ¼ T f ¼ T C ðaÞ
x� ¼ L : T s ¼ T f ¼ T H ðbÞ

y� ¼ 0 and y� ¼H � :
oT s

oy�

� �
y�¼0;H�

¼ oT f

oy�

� �
y�¼0;H�

¼ 0 ðcÞ:

ð3Þ

The initial conditions are related to the initial physical con-
ditions of having the porous medium in thermal equilib-
rium with its surroundings leading to the same uniform
constant temperature for both phases, i.e.

t� ¼ 0 : ðT sÞt�¼0 ¼ ðT fÞt�¼0 ¼ T 0 ¼ constant: ð4Þ

Two methods are in principle available to solving the prob-
lem (1) and (2) analytically subject to the boundary condi-
tions (3) and initial conditions (4). The first method (‘‘the
eigenvectors method”) is linked to evaluating the eigen-
values and eigenvectors directly from system (1) and (2).
The second method (‘‘the elimination method”) is related
to deriving an equivalent equation that is second order in
time and fourth order in space via elimination of the depen-
dent variables Ts and Tf. The first step in this paper is to
present the paradox that was introduced by Vadasz [1],
then the solution is presented via both methods listed
above and their results compared.

The stated paradox appears when attempting to solve
the problem via ‘‘the elimination method”. The elimination
of the dependent variables Ts and Tf (one at a time or
simultaneously) is accomplished via one of the two meth-
ods presented by Vadasz [1,13,16] leading to two indepen-
dent equations for each phase in the form

sq
o2T i

ot2
�
þ oT i

ot�
¼ ae r2

�T i þ sTr2
�

oT i

ot�

� �
� ber4

�T i

� �
8i ¼ s; f ð5Þ

where the index i can take the values s representing the so-
lid phase or f standing for the fluid phase and where the fol-
lowing notation was used

sq ¼
cscf

hðcs þ cfÞ
; ae ¼

ðks þ kfÞ
ðcs þ cfÞ

;

sT ¼
ðcskf þ cf ksÞ

hðks þ kfÞ
; be ¼

kskf

hðks þ kfÞ
ð6Þ

(Note: the present definition of be is different than in
Vadasz [1]). Eq. (5) is a linear equation that applies to each
phase, while its parameters are effective coefficients com-
mon to both phases. By imposing the combination of
Dirichlet (constant temperatures) and insulation boundary
conditions expressed by Eq. (3) and assuming uniform and
identical initial conditions for both phases expressed by Eq.
(4) provides two boundary conditions in each direction and
one initial condition for each phase. However, Eq. (5) is
fourth order in space and second order in time, requiring
therefore two additional boundary conditions in each
direction and one additional initial condition. The latter
conditions can be derived from the original ones (3) and
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(4) by using the original equations (1) and (2), which gov-
ern the heat conduction at all times (including t

*
= 0) and

over the whole physical domain including the boundaries.
The derived boundary and initial conditions to be used in
connection with the solution to Eq. (5) are

x� ¼ 0 : T i¼ T C; ðo2T i=ox2
�Þx�¼0¼ 0 8i¼ s;f ðaÞ

x� ¼ L : T i¼ T H; ðo2T i=ox2
�Þx�¼L¼ 0 8i¼ s;f ðbÞ

y� ¼ 0;H � : ðoT i=oy�Þy�¼0;H�
¼ 0;

ðo3T i=oy3
�Þy�¼0;H�

¼ 0 8i¼ s;f ðcÞ

ð7Þ

t� ¼ 0 : ðT iÞt�¼0 ¼ T 0 ¼ constant;

ðoT i=ot�Þt�¼0 ¼ 0 8i ¼ s; f ð8Þ

Eq. (5) that is identical for both phases shares common
effective parameters for both phases, solved subject to iden-
tical boundary and initial conditions for each phase, (7)
and (8) produce therefore a solution that is expected to
be identical for both phases, i.e.

T sðt�; x�Þ ¼ T fðt�; x�Þ 8ðt� P 0; x� 2 ½0; L�; y� 2 ½0;H ��Þ
ð9Þ

where x� ¼ ðx�; y�Þ represents the spatial variables. Eq. (9)
is identified as the requirement for local thermal equilib-
rium (Lotheq) in porous media conduction causing the
heat generation due to the heat transfer at the fluid–solid
interface Qsf ¼ hðT s � T fÞ to vanish. It was obtained accu-
rately from the original system of Eqs. (1) and (2) subject to
the specified boundary and initial conditions and other
than that no other imposed restrictions. This result is quite
astonishing and intriguing because it suggests that local

thermal equilibrium (Lotheq) exists naturally in any porous
domain subject to heat conduction and a combination of

constant temperature and insulation boundary conditions.
However, this conclusion needs further investigation.
Substituting Eq. (9) into Eqs. (1) and (2) yields

oT s

ot�
¼ asr2

�T s ð10Þ

oT f

ot�
¼ afr2

�T f ð11Þ

where as ¼ ks=cs and af ¼ kf=cf . The solution to Eqs. (10)
and (11) subject to the same boundary and initial conditions
as indicated in Eqs. (3) and (4) has to be identical to the
corresponding solutions of Eq. (5) subject to the equivalent
boundary and initial conditions (7) and (8), respec-
tively. This means that Eqs. (10) and (11) are expected to
produce an identical solution T sðt�; x�Þ ¼ T fðt�; x�Þ 8ðt� P
0; x� 2 ½0; L�; y� 2 ½0;H ��Þ despite the fact that in general
their respective thermal diffusivities may vary substantially.
The latter cannot be accomplished unless as ¼ af , leading to
the inevitable conclusion that consistency requires the
effective thermal diffusivities of both phases to be identical.
The latter condition was not explicitly imposed a priori, nor
implied in any of the subsequent derivations. Nevertheless,
it was obtained as a result that is linked to the consequences
of Eq. (9). However, the effective thermal diffusivities of
both phases are based on material properties and therefore
this limitation cannot generally be applicable. We must
therefore insist that as 6¼ af in which case Eqs. (10) and
(11) subject to the boundary and initial conditions (3) and
(4) will produce distinct solutions T sðt�; x�Þ 6¼ T fðt�; x�Þ
leading back to Eqs. (1) and (2) with non-vanishing inter-
phase heat transfer Qsf ¼ hðT s � T fÞ 6¼ 0 and the whole
process cycles indefinitely introducing the paradox.

3. Solution by the eigenvectors method

The system of Eqs. (1) and (2) and its corresponding
boundary and initial conditions are rendered dimensionless
by using L to scale the space variables x

*
and y

*
, in the

form x ¼ x�=L; y ¼ y�=L, L2=ae to scale time, that is,
t ¼ t�ae=L2 and introducing the dimensionless temperature
hi ¼ ðT i � T CÞ=ðT H � T CÞ 8i ¼ s; f, leading to the follow-
ing dimensionless form of Eqs. (1) and (2)

Fhs

ohs

ot
¼ 1

Nis

r2hs � ðhs � hfÞ ð12Þ

Fhf

ohf

ot
¼ 1

Nif

r2hf þ ðhs � hfÞ ð13Þ

where the following dimensionless groups listing the solid
phase and fluid phase Nield numbers NisNif , respectively,
and additional dimensionless groups that emerged

Bh¼ be

L2
; Nif ¼

hL2

kf

; Nis¼
hL2

ks

; Fhf ¼
ðcsþ cfÞ

cs

Foq¼
aecf

hL2
;

Fhs¼
ðcsþ cfÞ

cf

Foq¼
aecs

hL2
; Foq¼

aesq

L2
; FoT¼

aesT

L2

ð14Þ

The dimensionless form of the boundary and initial condi-
tions (3) and (4) are

x ¼ 0 : hi ¼ 0 8i ¼ s; f ðaÞ

x ¼ 1 : hi ¼ 1 8i ¼ s; f ðbÞ

y ¼ 0;H : ðohi=oyÞy¼0;H ¼ 0 8i ¼ s; f ðcÞ
ð15Þ

t ¼ 0 : ðhiÞt¼0 ¼ h0 ¼ constant 8i ¼ s; f ð16Þ

The solution to Eqs. (12) and (13) is separated into steady
state hi;sts and transient hi;tr parts in the form hi ¼ hi;stsþ
hi;tr. The steady state for both phases i = s, f is satisfied
by the linear solution hi;sts ¼ x, which satisfies the boundary
conditions (15). It is sensible to assume for hi;tr to be inde-
pendent of the y coordinate and this assumption satisfies
the boundary conditions (15c) at y = 0,H. As a result,
the equations governing the transient have the form

Fhs

ohs;tr

ot
¼ 1

Nis

o
2hs;tr

ox2
� ðhs;tr � hf;trÞ ð17Þ

Fhf

ohf ;tr

ot
¼ 1

Nif

o
2hf ;tr

ox2
þ ðhs;tr � hf ;trÞ ð18Þ
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subject to boundary and initial conditions that are ob-
tained following the substitution of hi ¼ xþ hi;tr into (15)
and (16) leading to

x ¼ 0; 1 : hi;tr ¼ 0 8i ¼ s; f ð19Þ
t ¼ 0 : ðhi;trÞt¼0 ¼ h0 � x 8i ¼ s; f ð20Þ

The solutions to Eqs. (17) and (18) subject to the boundary
and initial conditions (19) and (20) are obtained via separa-
tion of variables in the form of two equations for each
phase in the form hi;tr ¼ /inðtÞunðxÞ where the functions
unðxÞ are identical for both phases because they satisfy
the same equations and the same boundary conditions.
The latter statement about the fact that both phases share
the same eigenfunctions unðxÞ can be proven in detail, a
step that is skipped here for brevity of the presentation.
The resulting equation is d2un=dx2 þ j2

nun ¼ 0. The solution
to this equation subject to the homogeneous bound-
ary conditions derived from (19) ðunÞx¼0;1 ¼ 0 and
ðd2un=dx2Þx¼0;1 ¼ 0 at x ¼ 0; 1, is un ¼ sinðjnxÞ, and the
resulting eigenvalues are jn ¼ np 8n ¼ 1; 2; 3; . . .. Substi-
tuting this eigenfunction solution into Eqs. (17) and (18)
yields the following set of ordinary differential equations
for the eigenfunctions in the time domain /snðtÞ and /fnðtÞ

d/sn

dt
¼ an/sn þ b/fn ðaÞ

d/fn

dt
¼ c/sn þ dn/fn ðbÞ

8><
>: ð21Þ

where the definition of the coefficients that emerged from
the substitution is

an ¼ �
n2p2 þ Nisð Þ

NisFhs

; dn ¼ �
n2p2 þ Nifð Þ

Nif Fhf

;

b ¼ Fh�1
s ; c ¼ Fh�1

f ð22Þ

The general solution has therefore the form

hi ¼ xþ
X1
n¼1

/inðtÞ sinðnpxÞ 8i ¼ s; f ð23Þ

where /inðtÞ are the solutions to the system of Eq. (21).
However, the system (21) needs initial conditions in terms
of /snð0Þ and /fnð0Þ. The latter may be obtained from the
initial conditions of hs and hf, (16), applied to Eq. (23) in
the form

ðhiÞt¼0 � xþ
X1
n¼1

/inð0Þ sinðnpxÞ ¼ h0 8i ¼ s; f ð24Þ

Multiplying (24) by sinðjpxÞ, integrating the result over the
whole domain, i.e.

R 1

0
ð�Þ dx, and using the orthogonality

conditions yields an identical initial condition for both
phases, /inð0Þ, in the form

/snð0Þ ¼ /fnð0Þ ¼ /no ¼
2fð�1Þn þ ½1� ð�1Þn�h0g

np
: ð25Þ
The eigenvalues and eigenvectors are obtained from Eq.
(21) to yield

k1;2n ¼
1

2
ðan þ dnÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðan þ dnÞ2 � 4ðandn � bcÞ

q� �
ð26Þ

V1n ¼ ½1; ðk1n � anÞ=b�T ¼ ½1; c=ðk1n � dnÞ�T ð27Þ

V2n ¼ ½1; ðk2n � anÞ=b�T ¼ ½1; c=ðk2n � dnÞ�T ð28Þ

and the solution in terms of these eigenvectors has the form

/n ¼ C1V1nek1nt þ C2V2nek2nt ð29Þ

where /n ¼ ½/sn;/fn�
T.

The following relationships obtained from (26)–(28) are
useful in the following analysis. From (26) one may obtain
(see Appendix for details)

ðk1n � dnÞ ¼ �ðk2n � anÞ or ðk1n � anÞ ¼ �ðk2n � dnÞ ð30Þ

From Eqs. (27) and (28) one gets

ðk1n � anÞðk1n � dnÞ ¼ bc; and ðk2n � anÞðk2n � dnÞ ¼ bc

ð31Þ

respectively. The following identities that are obtained
from (14) and (6) are useful to demonstrate the next point

ðNisNif FhsFhfÞ�1 ¼ Bh=Foq ¼ Bf ;

ðNis þ NifÞðNisNifFhsFhfÞ�1 ¼ Fo�1
q ð32Þ

By substituting (22) and the definitions (14) and (6) yields
(introducing the notation of mn and x2

nÞ

mn ¼ �ðan þ dnÞ ¼ n2p2 ðas þ afÞ
ae

þ 1

Foq

� �
ð33Þ

and using also (32) leads to

x2
n ¼ ðandn � bcÞ ¼ n4p4

NisNifFhsFhf

þ ðNis þ NifÞ
NisNifFhsFhf

n2p2

¼ Bh
Foq

� �
n4p4 þ n2p2

Foq
: ð34Þ

By using the initial conditions (25) into Eq. (29) and eval-
uating the coefficients C1 and C2 produces the solutions in
the time domain /inðtÞ needed in the general solution (23),
in the form

/sn ¼
½k2n � ðan þ bÞ�/no

ðk2n � k1nÞ
ek1nt � ½k1n � ðan þ bÞ�/no

ðk2n � k1nÞ
ek2nt

/fn ¼
ðk1n � anÞ½k2n � ðan þ bÞ�/no

bðk2n � k1nÞ
ek1nt

� ðk2n � anÞ½k1n � ðan þ bÞ�/no

bðk2n � k1nÞ
ek2nt ð35Þ

By using now Eq. (30) followed by using (31) yields

/fn ¼
½k2n � ðdn þ cÞ�/no

ðk2n � k1nÞ
ek1nt � ½k1n � ðdn þ cÞ�/no

ðk2n � k1nÞ
ek2nt

ð36Þ
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where /no is defined in Eq. (25), k1n and k2n are defined in
Eq. (26), and an, b, c, dn are defined in Eq. (22). Substituting
(35) and (36) into (23) produces the general solution
obtained via the eigenvectors method in the form

hs ¼ xþ
X1
n¼1

½k2n � ðan þ bÞ�/no

ðk2n � k1nÞ
ek1nt

�

� ½k1n � ðan þ bÞ�/no

ðk2n � k1nÞ
ek2nt

�
sinðnpxÞ ð37Þ

hf ¼ xþ
X1
n¼1

½k2n � ðdn þ cÞ�/no

ðk2n � k1nÞ
ek1nt

�

� ½k1n � ðdn þ cÞ�/no

ðk2n � k1nÞ
ek2nt

�
sinðnpxÞ ð38Þ
4. Solution by the elimination method

Eq. (5) and its corresponding boundary and initial con-
ditions are converted into a dimensionless form by using
the same scales introduced in the previous section, leading
to

Foq
o2hi

ot2
þ ohi

ot
¼ r2hi þ FoTr2 ohi

ot

� �
� Bhr4hi 8i ¼ s; f

ð39Þ
where the two Fourier numbers, Foq, FoT, and one addi-
tional dimensionless group (the bi-harmonic number, Bh)
that were defined in Eq. (14) emerged. The dimensionless
form of the boundary and initial conditions (7) and (8) that
are required for the solution of Eq. (39) are

x ¼ 0 : hi ¼ 0; ðo2hi=ox2Þx¼0 ¼ 0 8i ¼ s; f ðaÞ
x ¼ 1 : hi ¼ 1; ðo2hi=ox2Þx¼1 ¼ 0 8i ¼ s; f ðbÞ
y ¼ 0;H : ðohi=oyÞy¼0;H ¼ 0;

ðo3hi=oy3Þy¼0;H ¼ 0 8i ¼ s; f ðcÞ

ð40Þ

t ¼ 0 : ðhiÞt¼0 ¼ h0 ¼ constant; ðohi=otÞt¼0 ¼ 0 8i ¼ s; f

ð41Þ
The solution to Eq. (39) is separated into steady state hi;sts

and transient hi;tr parts in the form hi ¼ hi;sts þ hi;tr. The
steady state for both phases i = s, f is satisfied by the linear
solution hi;sts ¼ x, which satisfies the boundary conditions
(40). In addition, it is a sensible assumption for the tran-
sient part hi;tr to be considered independent of the y coor-
dinate and this assumption satisfies the boundary
conditions (40c) at y ¼ 0;H . As a result, the equation gov-
erning the transient has the form

Foq
o2hi;tr

ot2
þ ohi;tr

ot
¼ o2hi;tr

ox2
þ FoT

o3hi;tr

otox2
� Bh

o4hi;tr

ox4
8i ¼ s; f

ð42Þ
subject to boundary and initial conditions that are ob-
tained following the substitution of hi ¼ xþ hi;tr 8i ¼ s; f
into (40) and (41) leading to
x ¼ 0 : hi;tr ¼ 0; ðo2hi;tr=ox2Þx¼0 ¼ 0 8i ¼ s; f ðaÞ
x ¼ 1 : hi;tr ¼ 0; ðo2hi;tr=ox2Þx¼1 ¼ 0 8i ¼ s; f ðbÞ

ð43Þ

t ¼ 0 : ðhi;trÞt¼0 ¼ h0 � x; ðohi;tr=otÞt¼0 ¼ 0 8i ¼ s; f

ð44Þ

The solution to Eq. (42) subject to the boundary and initial
conditions (43) and (44) is obtained via separation of vari-
ables in the form of two equations for each phase as
hi;tr ¼ /inðtÞunðxÞ where the function unðxÞ is identical for
both phases because it satisfies the same equations and
the same boundary conditions. The equation for the com-
mon eigenfunction unðxÞ is identical to the one obtained
in the previous section and is subject to the same homoge-
neous boundary conditions ðunÞx¼0;1 ¼ 0 leading inevitably
to the same eigenfunction solution unðxÞ ¼ sinðnpxÞ. The
equations for the eigenfunctions in the time domain is

Foq
d2/in

dt2
þ ð1þ FoTj2

nÞ
d/in

dt
þ j2

nð1þ j2
nBhÞ/in ¼ 0

8i ¼ s; f : ð45Þ

Eq. (45) is identical to a linear damped oscillator (mechan-
ical mass-spring-damper m� K � c, or electrical L-R-C cir-
cuit). A more convenient form of (45) is obtained after
dividing it by Foq to yield

d2/in

dt2
þ mn

d/in

dt
þ x2

n/in ¼ 0 8i ¼ s; f ð46Þ

where the specific damping coefficient mn and natural fre-
quency xn are the parameters defined in Eqs. (33) and
(34), respectively.

The dimensionless group that emerged from the defini-
tion of x2

n in (34) as a combination of the bi-harmonic
number Bh and the heat flux Fourier number Foq is
Bf ¼ Bh=Foq ¼ asaf=a2

e , where as ¼ ks=cs and af ¼ kf=cf .
In addition, the dimensionless group that emerged from
the definition of mn in (33) as a combination of the heat flux
and temperature gradient related Fourier numbers Foq and
FoT, respectively, is w ¼ FoT=Foq ¼ sT=sq ¼ 1þ Bf þ ðgc�
gkÞ

2
=½gcgkð1þgkÞð1þg�1

k Þ�P 1þBf > 1, where gc¼ cf=cs

and gk ¼ kf=ks. Despite the similarity of Eq. (46) to a linear
damped oscillator, physical constraints allow only over-
damped solutions to exist in this particular application as
demonstrated by Vadasz [13–15].

From (46), the equation for the eigenvalues has the form
k2

n þ mnkn þ x2
n ¼ 0, leading to the eigenvalues solutions

k1n ¼ �
mn

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

x2
n

m2
n

s" #
and

k2n ¼ �
mn

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

x2
n

m2
n

s" #
ð47Þ

and the eigenfunctions /in are the superposition of exp½k1nt�
and exp½k2nt�
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/inðtÞ ¼ Ainek1nt þ Binek2nt 8i ¼ s; f ð48Þ

leading to the solution for hi;tr expressed in the form

hi;tr ¼
X1
n¼1

/inðtÞ sinðnpxÞ 8i ¼ s; f ð49Þ

The solution (49) includes two sequences of coefficients
presented in (48) that need to be established from the
two initial conditions (44) at t = 0. The first initial condi-
tion produces

ðhi;trÞt¼0 �
X1
n¼1

/inð0Þ sinðnpxÞ ¼ h0 � x 8i ¼ s; f ð50Þ

A relationship between Ain and Bin in Eq. (48) is obtained
by multiplying Eq. (50) by sinðjpxÞ, integrating the results
over the whole domain, i.e.

R 1

0
ð�Þ dx and using orthogonal-

ity conditions to yield

Ain þ Bin ¼ /no 8i ¼ s; f ð51Þ

where

/snð0Þ ¼ /fnð0Þ ¼ /no ¼
2½h0 þ ð1� h0Þð�1Þn�

np
ð52Þ

and from (52) the relationship between the coefficients Ain

and Bin is

Bin ¼ /no � Ain 8i ¼ s; f ð53Þ

which upon substitution into (48) and then into (49) yields

hi;tr ¼
X1
n¼1

Ainek1nt þ ð/no � AinÞek2nt
	 


sinðnpxÞ 8i ¼ s; f

ð54Þ

Using now the second initial condition from (44) into (54)
produces the equation

ohi

ot

� �
t¼0

�
X1
n¼1

½Aink1n þ ð/no � AinÞk2n� sinðnpxÞ ¼ 0

8i ¼ s; f ð55Þ

The values of the coefficients Ain are finally obtained from
(55) to yield

Ain ¼
k2n/no

ðk2n � k1nÞ
8i ¼ s; f ð56Þ

Eq. (56) indicates that the coefficients for both phases are
identical, i.e. Asn ¼ Afn, a fact that causes the solutions
for both phases to be identical too. The complete solution
is obtained from (49) by substituting Eqs. (53) and (56)
leading to

hi ¼ xþ
X1
n¼1

k2n/no

ðk2n � k1nÞ
ek1nt � k1n/no

ðk2n � k1nÞ
ek2nt

� �
sinðnpxÞ

8i ¼ s; f ð57Þ

and is perfectly consistent with the conclusion reached in
Section 2, Eq. (9), indicating that the temperature of both
phases are identical leading to Lotheq and consequently to
the stated paradox.
5. Resolution of the paradox

While the eigenvalues obtained via both the elimination
and the eigenvectors methods are identical leading to iden-
tical final forms of the solution let us compare the final
coefficients in these solutions obtained via the two different
methods. Comparing the coefficients of the ek1nt term in (37)
and (38) with the corresponding coefficients to the same
term in (57) shows that the first part of the coefficients is
identical but the second part is missing in Eq. (57). Simi-
larly for the coefficients to the ek2nt term, their second part
is missing in Eq. (57).

What is therefore the reason that the elimination
method produces an incorrect result? The first part of the
answer to this question can be obtained by observing that
both methods produce identical solutions up to the point
where we imposed the second initial condition on the elim-
ination method solution, Eq. (54). Only after imposing the
initial condition (55) specifying a vanishing initial temper-
ature derivative in time, i.e. ðohi=otÞt¼0 ¼ 0 8i ¼ s; f the
two solutions obtained via the two different methods
diverged producing the apparent paradox. Then, the sec-
ond part of the answer should be related to the question
of why a perfectly correct initial condition obtained cor-
rectly from the analysis preceding Eqs. (7) and (8) produces
an incorrect solution. The answer to this second part of the
question is related to the way the coefficients were evalu-
ated from the Fourier series in Eq. (55) by using this deriv-
ative initial condition. The implied assumption when doing
so is that any constant (including the 0) can be expanded
into a Fourier series. It is however naı̈ve to expect the exis-
tence of a Fourier expansion to the 0 constant as Eq. (55)
implies. The coefficients obtained this way are therefore
incorrect, although the initial condition ðohi=otÞt¼0 ¼
0 8i ¼ s; f is indeed correct. In order to correct this evalu-
ation of the coefficients via the elimination method let us
check what do we need to do instead of using the initial
condition ðohi=otÞt¼0 ¼ 0 8i ¼ s; f. We still need derivative
initial conditions for /inðtÞ, i.e. ðd/in=dtÞt¼0 8i ¼ s; f in
order to establish the value of the coefficients Ain 8i ¼
s; f. However, as distinct from ðohi=otÞt¼0 which needs the
full system of partial differential equations (12), (13) to
extract its value, the values of ðd/in=dtÞt¼0 can be obtained
from the system of ordinary differential equations (21a,b)
by using the known values of /snð0Þ ¼ /fnð0Þ ¼ /no that
were evaluated and presented in Eq. (52). Substituting
these values for t = 0 in Eq. (21) yields

d/sn

dt

� �
t¼0

¼ an/snð0Þ þ b/fnð0Þ ¼ ðan þ bÞ/no ðaÞ

d/fn

dt

� �
t¼0

¼ c/snð0Þ þ dn/fnð0Þ ¼ cþ dnð Þ/no ðbÞ

ð58Þ
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Now, from (54) we evaluated /inðtÞ up to the yet unknown
value of the constants Ain, in the form

/inðtÞ ¼ Ainek1nt þ ð/no � AinÞek2nt 8i ¼ s; f ð59Þ

From (59) one can take the time derivative to yield

d/in

dt
¼ k1nAinek1nt þ k2nð/no � AinÞek2nt 8i ¼ s; f ð60Þ

and evaluating (60) at t = 0 produces

d/in

dt

� �
t¼0

¼ k1nAin þ k2nð/no � AinÞ ð61Þ

Substituting now the initial conditions (58) into (61) leads
to the result

k1nAsn þ k2nð/no � AsnÞ ¼ ðan þ bÞ/no ð62Þ
k1nAfn þ k2nð/no � AfnÞ ¼ ðcþ dnÞ/no ð63Þ

The values of the coefficients Asn and Afn can now be eval-
uated from (62) and (63) in the form

Asn ¼
½k2n � ðan þ bÞ�/no

ðk2n � k1nÞ
ð64Þ

Afn ¼
½k2n � ðdn þ cÞ�/no

ðk2n � k1nÞ
ð65Þ

Substituting these results (64), (65) into (59) and the result
into (49) and adding the steady part yields

hs ¼ xþ
X1
n¼1

½k2n � ðan þ bÞ�/no

ðk2n � k1nÞ
ek1nt

�

� ½k1n � ðan þ bÞ�/no

ðk2n � k1nÞ
ek2nt

�
sinðnpxÞ ð66Þ

hf ¼ xþ
X1
n¼1

½k2n � ðdn þ cÞ�/no

ðk2n � k1nÞ
ek1nt

�

� ½k1n � ðdn þ cÞ�/no

ðk2n � k1nÞ
ek2nt

�
sinðnpxÞ ð67Þ

The first observation from the solutions (66) and (67) is
that these solutions are not anymore identical, i.e. now
we obtained LaLotheq conditions i.e. hs 6¼ hf as we did
via the eigenvector method. Comparing now these solu-
tions obtained via the elimination method (66) and (67)
with the solutions (37) and (38), respectively, obtained
via the eigenvectors method by looking at the coefficients
of the terms ek1nt and ek2nt, brings us to the conclusion that
both methods yield identical solutions, i.e. (37) is identical
to (66) and (38) is identical to (67). The latter conclusion
resolves therefore the paradox.

However, now that we have obtained identical solutions
via both methods and resolved the paradox, it is interesting
to observe how the initial temperature derivative with
respect to time ðohi=otÞt¼0 as evaluated from these solutions
looks like, and whether it indeed vanishes as expected. Tak-
ing the time derivative of the solutions Eqs. (37), (38) or
(66) and (67) and evaluating it at t = 0 leads to
ohs

ot

� �
t¼0

¼
X1
n¼1

/noðan þ bÞ sinðnpxÞ ð68Þ

ohf

ot

� �
t¼0

¼
X1
n¼1

/noðdn þ cÞ sinðnpxÞ ð69Þ

Substituting the definitions of an, b, dn and c from (22) and
by using (14) yields

an þ b ¼ � n2p2

NisFhs

¼ � as

ae

n2p2 ð70Þ

dn þ c ¼ � n2p2

NifFhf

¼ � af

ae

n2p2 ð71Þ

where as ¼ ks=cs, af ¼ kf=cf and ae is defined in Eq. (6).
Substituting (70) and (71) as well as the value of /no from
(52) into (68) and (69) yields

ohs

ot

� �
t¼0

¼ � 2asp
ae

X1
n¼1

n½h0 þ ð1� h0Þð�1Þn� sinðnpxÞ

ð72Þ

ohf

ot

� �
t¼0

¼ � 2afp
ae

X1
n¼1

n½h0 þ ð1� h0Þð�1Þn� sinðnpxÞ

ð73Þ

The simplest case is obtained for h0 ¼ 0 when (72) and (73)
become

ohs

ot

� �
t¼0

¼ � 2asp
ae

X1
n¼1

ð�1Þnn sinðnpxÞ ð74Þ

ohf

ot

� �
t¼0

¼ � 2afp
ae

X1
n¼1

ð�1Þnn sin npxð Þ ð75Þ

For any fixed value of x these alternating series have the
form

P1
n¼1ð�1Þnn ¼ �1þ 2� 3þ 4� 5þ 6� � � � ; because

the sine function will vary between �1 and 1 as the value of
n changes at fixed x. The sum of any two consecutive terms
is either 1 or �1, depending on the choice of grouping the
terms. In both cases the sum becomes

P1
n¼1ð�1Þnn ¼P1

n¼1 � 1! �1, hence we conclude that the series in
(74) and (75) diverge and we cannot estimate ðohi=otÞt¼0

analytically from the solutions. Actually the funny part
of this result is that according to (74) and (75) the initial
temperature derivatives ðohi=otÞt¼0 are identically zero on
the boundaries, at x ¼ 0; 1, where we could have antici-
pated the singularity because of the temperature step
change there. Yet the results show that ðohi=otÞt¼0 is iden-
tically zero on the boundaries and diverges elsewhere. This
particular anomaly should be the subject of further
investigation.
6. Results and discussion

The analytical series solution obtained via both methods
was evaluated and plotted in order to visualize the behavior
of the solutions for both phases during the transient, eval-
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uate the temperature differences between the phases and
verify the analytical conclusions drawn.

The initial temperature value was taken as h0 ¼ 0:5,
implying T 0 ¼ ðT H þ T CÞ=2. The values of the parameters
used were Nif ¼ 1, Nis ¼ 0:5 and Fhf ¼ Fhs ¼ 1:5.

The results are presented graphically in Fig. 2 in terms
of hs and hf as a function of time at constant values of x.
Fig. 2a presents the results for x ¼ 0:1, 0.2, 0.3, and 0.4,
while Fig. 2b presents the results for x ¼ 0:6, 0.7, 0.8,
and 0.9. It is obvious from these results that the tempera-
tures of the phases are distinct, they start initially at t = 0
being identical, i.e. ðhsÞt¼0 ¼ ðhfÞt¼0 ¼ h0 ¼ 0:5 and they
end-up being identical at steady state, i.e. ðhsÞt!1 ¼
ðhfÞt!1 ¼ x, but during the transient hs 6¼ hf .

These results are plotted in Fig. 3a in more detail while
zooming into the initial time domain t 2 ½0; 0:002� in order
to check the initial time derivative of temperature
ðohs=otÞt¼0 and ðohf=otÞt¼0. It is observed as anticipated
that the temperature values overlap showing no variation
in time except for the neighborhood of the boundaries,
Fig. 2. Results of the analytical solution for the temperature of both
phases as a function of time at selected locations: (a) at values of
x ¼ 0:1,0.2,0.3, and 0.4; (b) at values of x ¼ 0:6,0.7,0.8 and 0.9.

Fig. 3. Results of (a) the temperature solutions for short times by zooming
into the initial time domain t 2 ½0; 0:002� in order to check the initial time
derivative of the temperature ðohs=otÞt¼0 and ðohf=otÞt¼0, (b) the temper-
ature difference between the phases in terms of Dh ¼ ðhs � hf Þ as a
function of time at selected constant values of x.
i.e. for x ¼ 0:1 and x ¼ 0:9. Even for this neighborhood it
may be observed that there is an initial time domain
t 2 ½0; 0:0005� where temperature variations in time seem
non-existent reinforcing the analytical conclusion that
ðohs=otÞt¼0 ¼ ðohf=otÞt¼0 ¼ 0. The numerical values (not
shown here) confirm this result to machine precision.

The temperature difference between the phases in terms
of Dh ¼ ðhs � hfÞ as a function of time at selected constant
values of x is presented in Fig. 3b clearly identifying the
variation of the temperature difference between the phases
with time, starting from and ending with identical values.

7. Conclusions

An apparent paradox that appears in problems of heat
conduction in porous media subject to lack of local thermal
equilibrium (LaLotheq) was reformulated and resolved.
This apparent paradox relates to a combination of Dirich-
let and insulation boundary conditions and leads the solu-
tion towards local thermal equilibrium (Lotheq). While the
formulation, analysis and demonstration of the apparent
paradox and its resolution was undertaken here for a
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specific two-dimensional and rectangular geometry, its gen-
eralization to an arbitrary three-dimensional geometry as
presented by Vadasz [1] is not straightforward because
the way around the Paradox in this particular case was
approached via the Fourier decomposition, while the intro-
duction of the general formulation of the Paradox in
Vadasz [1] did not use such a decomposition and therefore
the resolution applied in the particular case presented here
cannot apply in the more general case formulation. We also
identified as the source of the Paradox the fact that the ini-
tial temperature derivative with respect to time cannot be
estimated from the analytical solution and actually pro-
duces an analytical anomaly. More work is needed to
understand the reason for the latter and how this may
affect the formulated Paradox.
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Appendix

Let us present Eq. (26) for the eigenvalues k1n and k2n in
the form

k1n ¼
ðan þ dnÞ

2
þ dn

2
; k2n ¼

ðan þ dnÞ
2

� dn

2
ðA:1Þ

where dn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðan þ dnÞ2 � 4ðandn � bcÞ

q
. Then by using

(A.1)

ðk1n � dnÞ ¼
ðan þ dnÞ

2
þ dn

2
� dn ¼

ðan � dnÞ
2

þ dn

2

¼ 1

2
ðan � dn þ dnÞ ðA:2Þ

ðk2n � anÞ ¼
ðan þ dnÞ

2
� dn

2
� an ¼ �

ðan � dnÞ
2

� dn

2

¼ � 1

2
ðan � dn þ dnÞ ðA:3Þ

Comparing (A.2) with (A.3) leads to the conclusion

ðk1n � dnÞ ¼ �ðk2n � anÞ ðA:4Þ
This result is the relationship presented in Eq. (30) in the
text.
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